آشنایی با نیمه هادی ها
آشنایی با نیمه هادی ها:
اجزای ماده :
همه مواد از ملکولهایی شکل میگیرند که آنها نیز خود از اتمها ساخته می شوند . اتمها از دو جز’ اصلی الکترون و هسته ساخته می شوند که الکترونها در مدارهای مشخص بدور هسته در گردش می باشند .
چه عاملی سبب ماندن الکترون در مدار مشخص خود می شود ؟
بین الکترون و هسته نیروی جاذبه الکتریکی وجود دارد که اندازه آن برابر نیروی دافعه گریز از مرکز ناشی از چرخش سریع الکترون بدور هسته می باشد.
الکترون چیست؟
الکترون معنای یونانی کهربا است کهربا ماده ای است که در مالش به پارچه پشمی باردار شده و خرده های کوچک کاه را جذب می کند.این ربایش بعلت نیرویی مرموز اتفاق می افتد که یونانیان آن را الکتریسیته نامیده اند.
درون هسته چیست ؟
هسته شامل ذرات بسیاری است که مهمترین آنها از نظر جرم پروتون و نوترون است .
بار الکتریکی چیست ؟
بین الکترونها و پروتونها نیروی جاذبه و بین خودشان باهم نیروی دافعه وجود دارد که ماهیت این نیروها هنوز شناخته نشده است اما برای تحلیل ساده تر بارالکتریکی را مطرح کرده که برای الکترون با علامت منفی و برای پروتون با علامت مثبت مشخص شده است.
چگونه می توان مواد را باردار کرد ؟
روشهای باردار کردن ماده همان روشهای تولید الکتریسیته است.بعبارت دیگر می توان با استفاده از این روشها الکتریسیته تولید کرد.ساده ترین این روشها مالش دو ماده بهم است که باعث می شود الکترونها از یک ماده به ماده دیگری بروند و در نتیجه اختلاف بار بین دو ماده ایجاد شود . مثلا مالش یک میله شیشه ای به یک پارچه پشمی سبب باردار شدن هر دو ماده می شود که یکی بار مثبت ( کمبود الکترون ) و دیگری بار منفی ( ازدیاد الکترون) می یابد .
نیروی الکتریکی چیست ؟
بین بارهای الکتریکی اعم از مثبت یا منفی نیروی الکتریکی وجود دارد این نیرو به مقدار بار الکتریکی و فاصله آنها از هم بستگی دارد . مطابق قانون کولن مقدار نیرو از حاصل ضرب بارها در ضریب ثابتی که به جنس محیط بستگی دارد تقسیم بر مجذور فاصله بین دو بار بدست می آید . اما در تحلیل ساده تر هرچه مقدار بارها بیشتر باشد مقدار نیرو نیز بیشتر و هرچه فاصله آنها بیشتر شود مقدار نیرو نیز کمتر می شود .
مواد در حالت عادی از نظر بار الکتریکی چگونه اند ؟
همه مواد در حالت عادی دارای مقدار الکترون و پروتون مساویند به همین دلیل از نظر برایند بارهای الکتریکی خنثی می باشند .
چگونه می توان یک ماده خنثی را باردار کرد ؟
هرگاه تعادل بین بارهای مثبت و منفی در یک جسم خنثی بهم بخورد ماده بار دار شده است . بهمین منظور کلیه روشهای تولید الکتریسیته کاری نمی کنند جز برهم زدن تعادل بین بارهای الکتریکی مثبت و منفی.می دانیم که الکترون نسبت به پروتون قابلیت جابجایی و حرکت بیشتری دارد . بنابراین می توان با دادن یا گرفتن الکترون ماده را باردار نمود . اگر تعداد الکترونها بیشتر از تعداد پروتونها شود جسم بار منفی و در صورتی که عکس این حالت روی دهد جسم بار مثبت پیدا می کند .
باردار کردن مواد چه ربطی به تولید الکتریسیته دارد ؟
برای جواب به این سوال نخست مواد را دسته بندی کنیم:
مواد از نظر هدایت الکتریکی به چند دسته تقسیم می شوند ؟
همه مواد از نظر هدایت الکتریکی جزو یکی از سه دسته زیر می باشند:
الف – هادی ها : موادی که براحتی برق را از خود عبور می دهند.
ب – عایقها : موادی که برق را از خود عبور نمی دهند.
ج – نیمه هادی ها : این مواد در شرایط خاصی مانند هادی ها یا نیمه هادی ها عمل می کنند . اما در حالت عادی برق را به مقدار ناچیز از خود عبور می دهند.
هدایت الکتریکی:
در تعریف هدایت الکتریکی می توان گفت : اگر الکترون در باند هدایت قرار گیرد ، آنقدر وابستگی آن از اتم مادر کم می شود که می توان آن را جا به جا کرد ، با جا به جایی این الکترون جریان الکتریکی ایجاد شده ؛ در نتیجه هدایت الکتریکی خواهیم داشت .
عناصر از لحاظ هدایت الکتریکی به چهار د سته زیر تقسیم می شوند :
1-عایق ها (Insulators)
2- نیمه هادیها (Semi conductors)
3-هادیها (Conductors)
4- ابر رساناها (Super conductors)
ساختار اتمی این عناصر از سه نوع باند زیر تشکیل شده است :
1- باند ظرفیت (Balance Band )
2-باند ممنوعه (Forbidden Band)
3- باند هدایت (Conductance)
سطح انرژی این سه باند رامی توان به صورت زیر نشان داد :
باند ظرفیت > باند ممنوعه > باند هدایت .
عایقها :
در عایق ها شکاف انرژی (تفاوت انرژی باند هدایت و باند ظرفیت ) آنقدر بزرگ است که با دادن انرژی به عنصر ، الکترون های باند ظرفیت نمی توانند به باند هدایت بروند در نتیجه هدایت الکتریکی نخواهیم داشت .
هادیها :
در هادی ها شکاف انرژی وجود ندارد . در نتیجه الکترون های باند ظرفیت آزادانه در دمای اتاق( ( Room Temperature =300 k به باند هدایت می روند ؛ بنابراین هدایت الکتریکی در این نوع عناصر وجود دارد .
نیمه هادیها :
در نیمه هادی ها شکاف انرژی صفر نیست اما در درجه حرارت اتاق معمولا یک الکترون- ولت (کمتر یا بیشتر) می باشد که درشرایط خاص می توان بر آن غلبه کرد و الکترون های باند ظرفیت رابه باند هدایت فرستاد تا هدایت الکتریکی ایجاد شود .
پیوند کووالانسی نیمه هادی ها :
گرچه تعداد زیادی از عناصر دارای خاصیت نیمه هادی الکتریکی هستند ، ولی در اینجا به بررسی عناصر سیلیکن و ژرمانیم که دارای کاربرد وسیعی در الکترونیک می باشند، می پردازیم. این عناصر (سیلیکن و ژرمانیم ) عناصر چهار ظرفیتی بوده که در باند ظرفیت دارای چهار الکترون هستند [تعداد الکترونهای سیلیکن ۱۴ و ژرمانیم ۳۲ است ]. علاوه بر سیلیکن و ژرمانیم عناصر دیگر نظیر کربن و یا ترکیباتی مثل گالیم ، ارسنید (Ga-As) می توانند به صورت نیمه هادی مورد استفاده قرار گیرند ، ولی به علت ملاحظات عملی کاربرد سیلیکن و ژرمانیم در ساختن قطعات الکتریکی بطور وسیعی افزایش یافته است .
عناصر سیلیکن و ژرمانیم هر دو دارای ساختمان کریستالی هستند . ساختمان کریستالی این عناصر نظیر اکثر جامدات ، بصورت سه بعدی و منظم است .
ساختمان سه بعدی کریستالهای سیلیکن و ژرمانیم بصورت هرم چهار گوش می باشد که در هر راس آن یک اتم قرار گرفته است.
در این شبکه کریستالی چهار الکترون ظرفیت هر یک از اتمها با الکترونهای ظرفیت اتمهای مجاور خود به اشتراک گذاشته شده و پیوند ظرفیتی تشکیل می دهند . بنابراین هر اتم ، دیگر دارای چهار الکترون ظرفیت نبوده بلکه در مدار خارجی آن هشت الکترون مشترک با سایر اتمهای مجاور قرار خواهد گرفت . این به اشتراک گذاشتن الکترونها باعث پیوند هر اتم با اتمهای مجاور خواهد بود . الکترونهایی که در این پیوندهای کووالانسی قرار می گیرند ، الکترونهای آزاد نبوده و نمی توانند در هدایت الکتریکی شرکت نمایند . این الکترونها وابسته به هسته های اتمی بوده و به این ترتیب این عناصر با وجود داشتن جهار الکترون ظرفیت ، دارای هدایت الکتریکی خیلی کمی خواهند بود .
اگر به اتمهای این عناصر انرژی کافی داده شود ، در اینصورت بعضی از این پیوندها شکسته شده و الکترونهای باند ظرفیت وارد باند هدایت شده و نظیر الکترون آزاد عمل می نمایند و به این ترتیب هدایت الکتریکی آن افزایش پیدا می کند .
انرژی لازم برای تحریک اتمها و یا شکستن پیوندهای کووالانسی می تواند بصورت انرژی نورانی ، حرارتی و یا الکتریکی به عنصر اعمال شود .
یک نیمه هادی خالص که در آن الکترونهای باند ظرفیت تشکیل پیوند کووالانسی می دهند بصورت یک عایق عمل می نمایند . در اینحالت سطوح انرژی باند هدایت خالی است . در درجه حرارت اتاق ، انرژی حرارتی کافی برای شکستن بعضی از پیوندهای ظرفیتی وجود دارد. بنابراین برخی از پیوندها شکسته شده و الکترونهایی آزاد می شوند . اما اگر نیمه هادی سرد شود و درجه حرارت آن به صفر مطلق برسد ؛ در اینصورت انرژی حرارتی از بین رفته وتمامی الکترونهای عنصر تشکیل پیونهای ظرفیتی خواهند داد (مگر اینکه شکل دیگری از انرژی به عنصر اعمال شده باشد ) . در اینحالت عنصر به هیچوجه هدایت نخواهد کرد .
فرایندهای تولید قطعات الکترونیکی:
ماده اولیه:
امروزه همه میدانند که ماده اولیه پردازندهها همچون دیگر مدارات مجتمع الکترونیکی، سیلیکون است.در واقع سیلیکون همان ماده سازنده شیشه است که از شن استخراج میشود. البته عناصر بسیار دیگری هم در این فرایند بهکار برده میشوند و لیکن از نظر درصد وزنی، سهم مجموع این عناصر نسبت به سیلیکون بهکار رفته در محصول نهایی بسیار جزئی است.
آلومینیوم یکی از مواد دیگری است که در فرایند تولید پردازندهها اهمیت زیادی دارد. هرچند که در پردازندههای مدرن، مس بهتدریج جایگزین آلومینیوم میشود.
علاوه بر آنکه فلز مس دارای ضریب هدایت الکتریکی بیشتری نسبت به آلومینیوم است، دلیل مهمتری هم برای استفاده از مس در طراحی پردازندههای مدرن امروزی وجود دارد. یکی از بزرگترین مسائلی که در طراحی پردازندههای امروزی مطرح است، موضوع نیاز به ساختارهای فیزیکی ظریفتر است. بهیاد دارید که اندازهها در پردازندههای امروزی در حد چند ده نانومتر هستند. پس ازآنجاییکه با استفاده از فلز مس، میتوان اتصالات ظریفتری ایجاد کرد، این فلز جایگزین آلومینیوم شده است.
آمادهسازی:
فرایندهای تولید قطعات الکترونیکی از یک جهت با بسیاری از فرایندهای تولید دیگر متفاوت است. در فرایندهای تولید قطعات الکترونیک، درجه خلوص مواد اولیه مورد نیاز در حد بسیار بالایی اهمیت بسیار زیادی دارند. اهمیت این موضوع در حدی است که از اصطلاح electronic grade برای اشاره به درجه خلوص بسیار بالای مواد استفاده میشود.
به همین دلیل مرحله مهمی بهنام آمادهسازی در تمامی فرایندهای تولید قطعات الکترونیک وجود دارد. در این مرحله درجه خلوص موارد اولیه به روشهای گوناگون و در مراحل متعدد افزایش داده میشود تا در نهایت به مقدار خلوص مورد نظر برسد. درجه خلوص مواد اولیه مورد نیاز در این صنعت به اندازهای بالا است که توسط واحدهایی مانند ppm به معنی چند اتم ناخالصی در یک میلیون اتم ماده اولیه، بیان میشوند.
آخرین مرحله خالصسازی ماده سیلیکون، بهاین صورت انجام میشود که یک بلورِ خالص سیلیکون درون ظرف سیلیکون مذاب خالص شده قرار داده میشود، تا بلور بازهم خالصتری در این ظرف رشد کند (همانطور که بلورهای نبات در درون محلول اشباع شده بهدور یک ریسمان نازک رشد میکنند). در واقع به این ترتیب، ماده سیلیکون مورد نیاز بهصورت یک شمش تک کریستالی تهیه میشود (یعنی تمام یک شمش بیست سانتیمتری سیلیکون، یک بلور پیوسته و بدون نقص باید باشد!).
این روش در صنعت تولید چیپ به روش CZ معروف است. تهیه چنین شمش تک بلوری سیلیکون آنقدر اهمیت دارد که یکی از تحقیقات اخیر اینتل و دیگر شرکتهای تولیدکننده پردازنده، معطوف تولید شمشهای سیسانتیمتری سیلیکون تکبلوری بوده است. درحالیکه خط تولید شمشهای بیست سانتیمتری سیلیکون هزینهای معادل ۵/۱ میلیارد دلار در بر دارد، شرکتهای تولید کننده پردازنده، برای بهدست آوردن خط تولید شمشهای تک بلوری سیلیکون سی سانتیمتری، ۵/۳ میلیارد دلار هزینه میکنند.
موضوع جالب توجه در این مورد آن است که تغییر اندازه شمشهای سیلیکون تکبلوری، تا کنون سریعتر از یکبار در هر ده سال نبوده است.
پس از آنکه یک بلور سیلیکونی غولآسا به شکل یک استوانه تهیه گشت، گام بعدی ورقه ورقه بریدن این بلور است. هر ورقه نازک از این سیلیکون، یک ویفر نامیده میشود که اساس ساختار پردازندهها را تشکیل میدهد. در واقع تمام مدارات یا ترانزیستورهای لازم، بر روی این ویفر تولید میشوند. هر چه این ورقهها نازکتر باشند، عمل برش بدون آسیب دیدن ویفر مشکلتر خواهد شد.
از طرف دیگر این موضوع به معنی افزایش تعداد چیپهایی است که میتوان با یک شمش سیلیکونی تهیه کرد. در هر صورت پس از آنکه ویفرهای سیلیکونی بریده شدند، نوبت به صیقلکاری آنها میرسد. ویفرها آنقدر صیقل داده میشوند که سطوح آنها آیینهای شود. کوچکترین نقصی در این ویفرها موجب عدم کارکرد محصول نهایی خواهد بود. به همین دلیل، یکی دیگر از مراحل بسیار دقیق بازرسی محصول در این مرحله صورت میگیرد. در این گام، علاوه بر نقصهای بلوری که ممکن است در فرایند تولید شمش سیلیکون ایجاد شده باشند، نقصهای حاصل از فرایند برش کریستال نیز بهدقت مورد کنکاش قرار میگیرند.
پس از این مرحله، نوبت به ساخت ترانزیستورها بر روی ویفر سیلیکونی میرسد. برای اینکار لازم است که مقدار بسیار دقیق و مشخصی از ماده دیگری به درون بلور سیلیکون تزریق شود. بدین معنی که بین هر مجموعه اتم سیلیکون در ساختار بلوری، دقیقاً یک اتم از ماده دیگر قرار گیرد. در واقع این مرحله نخستین گام فرایند تولید ماده نیمههادی محسوب میشود که اساس ساختمان قطعات الکترونیک مانند ترانزیستور را تشکیل میدهد. ترانزیستورهایی که در پردازندههای امروزی بهکار گرفته میشوند، توسط تکنولوژی CMOS تولید میشوند.
CMOS مخفف عبارت Complementary Metal Oxide Semiconductor است. در اینجا منظور از واژه Complementaryآن است که در این تکنولوژی، از تعامل نیمههادیهای نوع n و p استفاده میشود.
بدون آنکه بخواهیم وارد جزئیات فنی چگونگی تولید ترانزیستور بر روی ویفرهای سیلیکونی بشویم، تنها اشاره میکنیم که در این مرحله، بر اثر تزریق مواد گوناگون و همچنین ایجاد پوششهای فلزی فوق نازک (در حد ضخامت چند اتم) در مراحل متعدد، یک ساختار چند لایه و ساندویچی بر روی ویفر سیلیکونی اولیه شکل میگیرد. در طول این فرایند، ویفر ساندویچی سیلیکونی در کورهای قرار داده میشود تا تحت شرایط کنترلشده و بسیار دقیق (حتی در اتمسفر مشخص)، پخته میشود و لایهای از SiO2 بر روی ویفر ساندویچی تشکیل شود.
در جدیدترین فناوری اینتل که به تکنولوژی ۹۰ نانومتری معروف است، ضخامت لایه SiO2 فقط ۵ اتم است! این لایه در مراحل بعدی دروازه یا gate هر ترانزیستور واقع در چیپ پردازنده خواهد بود که جریان الکتریکی عبوری را در کنترل خود دارد (ترانزیستورهای تشکیل دهنده تکنولوژی CMOS از نوع ترانزیستورهای اثر میدانی یا Field Effect Transistor :FET نامیده میشوند. در این ترانزیستورها، جریان الکتریکی از اتصالی بهنام Source به اتصال دیگری بهنام Drain جریان مییابد. وظیفه اتصال سوم بهنام Gate در این ترانزیستور، کنترل و مدیریت بر مقدار و چگونگی عبور جریان الکتریکی از یک اتصال به اتصال دیگر است).
آخرین مرحله آمادهسازی ویفر، قرار دادن پوشش ظریف دیگری بر روی ساندویچ سیلیکونی است که photo-resist نام دارد. ویژگی این لایه آخر، همانطور که از نام آن مشخص می شود، مقاومت در برابر نور است. در واقع این لایه از مواد شیمیایی ویژهای ساخته شده است که اگر در معرض تابش نور قرار گرفته شود، میتوان آنرا در محلول ویژهای حل کرده و شست و در غیر این صورت (یعنی اگر نور به این پوشش تابانده نشده باشد)، این پوشش در حلال حل نخواهد شد. فلسفه استفاده از چنین مادهای را در بخش بعدی مطالعه خواهید کرد.
ماسک کردن:
این مرحله از تولید پردازندهها، بهنوعی از مراحل قبلی کار نیز مهمتر است. در این مرحله عمل فتولیتوگرافی(Photolithography) بر روی ویفر ساندویچی انجام میشود. در واقع آنچه در این مرحله انجام میشود آن است که بر روی ویفر سیلیکونی، نقشه و الگوی استنسیل مشخصی با استفاده از فرایند فتولیتوگرافی چاپ میشود، تا بتوان در مرحله بعدی با حلکردن و شستن ناحیههای نور دیده به ساختار مورد نظر رسید (ازآنجایی که قرار است نقشه پیچیدهای بر روی مساحت کوچکی چاپ شود، از روش فتولیتوگرافی کمک گرفته میشود).
در این روش نقشه مورد نظر در مقیاسهای بزرگتر- یعنی در اندازههایی که بتوان در عمل آنرا تولید کرد، مثلاً در مربعی به مساحت یک متر مربع – تهیه میشود. سپس با تاباندن نور به الگو و استفاده از روشهای اپتیکی، تصویر الگو را بر روی ناحیه بسیار کوچک ویفر میتابانند. مثلاً الگویی که در مساحت یک متر مربع تهیه شده بود، به تصویر کوچکی در اندازههای چند میلیمتر مربع تبدیل میشود!). در این موارد چند نکته جالب توجه وجود دارد. نخست آنکه الگوها و نقشههایی که باید بر روی ویفر چاپ شوند، آنقدر پیچیده هستند که برای توصیف آنها به ۱۰ گیگابایت داده نیاز است.
درواقع میتوان این موضوع را به حالتی تشبیه کرد که در آن قرار است نقشهای مانند نقشه یک شهر بزرگ با تمام جزئیات شهری و ساختمانی آن بر روی ویفر سیلیکونی به مساحت چند میلیمتر مربع، چاپ شود. نکته دیگر آنکه در ساختمان چیپهای پردازنده، بیش از بیست لایه مختلف وجود دارد که برای هر یک از آنها لازم است چنین نقشههایی لیتوگرافی شود.
موضوع دیگری که بد نیست در اینجا ذکرشود، آن است که همانطور که از دروس دبیرستانی ممکن است بهیاد داشته باشید، نور در لبههای اجسام دچار انحراف از مسیر راست میشود. پدیدهای که به پراش یا Diffraction معروف است. هرچه لبههای اجسامی که در مسیر تابش واقع شدهاند، کوچکتر یا ظریفتر باشند، پدیده پراش شدیدتر خواهد بود.
در واقع یکی از بزرگترین موانع تولید پردازندههایی که در آنها از ساختارهای ظریفتری استفاده شده باشد، همین موضوع پراکندگی یا تفریق نور است که باعث ماتشدن تصویری میشود که قرار است بر روی ویفر چاپ شود. برای مقابله با این مسئله، یکی از موثرترین روشها، آن است که از نوری در عمل فتولیتوگرافی استفاده کنیم که دارای طول موج کوچکتری است (بر اساس اصول اپتیک، هرچه طول موج نور تابانده شده کوچکتر باشد، شدت پدیده پراکندگی نور در لبههای اجسام کمتر خواهد بود). برای همین منظور در تولید پردازندهها، از نور UV (ماورای بنفش) استفاده میشود.
در واقع برای آنکه بتوان تصویر شفاف و ظریفی در اندازهها و مقیاس آنچنانی بر روی ویفرها تولید کرد، تنها طول موج ماورای بنفش جوابگو خواهد بود. اما اگر بخواهیم در نسل بعدی پردازندهها، از الگوهای پیچیدهتری استفاده کنیم، تکلیف چه خواهد بود؟ در تئوری میتوان از تابشی با طول موج بازهم کوتاهتری استفاده کرد. اما مشکل در اینجا است که تابش با طول موج کوتاهتر به معنی استفاده از نوعی اشعه ایکس است. میدانید که چنین اشعهای بیشتر از آنکه قادر باشد تصویری از نقشه مورد نظر بر روی ویفر ایجاد کند، بهعلت قابلیت نفوذ زیاد، از تمامی نواحی الگو بهطور یکسان عبور خواهد کرد!
از موارد فوق که بگذریم، پس از آنکه نقشه موردنظر بر روی ویفر چاپ شد، ویفر درون محلول شیمیایی ویژهای قرار داده میشود تا جاهایی که در معرض تابش واقع شدهاند، در آن حل شوند. بدین ترتیب شهر مینیاتوری را بر روی ویفر سیلیکونی تجسم کنید که در این شهر خانهها دارای سقفی از جنس SiO2 هستند (مکانهایی که نور ندیدهاند و درنتیجه لایه مقاوم در برابر حلال مانع از حل شدن ( SiO2 بوده است). خیابانهای این شهر فرضی نواحی که مورد تابش نور واقع شدهاند و لایه مقاوم آن و همچنین لایه SiO2 در حلال حل شدهاند) از جنس سیلیکون هستند.
تکرار
پس از این مرحله، لایه photo-resist باقی مانده از روی ویفر برداشته میشود. در این مرحله ویفری در اختیار خواهیم داشت که در آن دیوارهای از جنس SiO2 در زمینی از جنس سیلیکون واقع شدهاند. پس از این گام، یکبار دیگر یک لایه SiO2 به همراه پلیسیلیکون (Polysilicon) بر روی ویفر ایجاد شده و بار دیگر لایه photo-resist جدیدی بر روی ویفر پوشانده میشود.
همانند مرحله قبلی، چندین بار دیگر مراحل تابش نور و در حلال قرار دادن ویفر انجام میشوند. بدین ترتیب پس از دست یافتن به ساختار مناسب، ویفر در معرض بمباران یونی مواد مختلف واقع میشود تا نیمههادی نوع n و p بر روی نواحی سیلیکونی باقیمانده تشکیل شوند. به این وسیله، مواد مشخصی در مقادیر بسیار کم و دقیق بهدرون بلور سیلیکون نفوذ داده میشوند تا خواص نیمههادی نوع n و p بهدست آیند. تا اینجای کار، یک لایه کامل از نقشه الکترونیکی ترانزیستوری دوبعدی بر روی ویفر سیلیکونی تشکیل شده است.
با تکرار مراحل فوق، عملاً ساختار لایهای سه بعدی از مدارات الکترونیکی درون پردازنده تشکیل میشود. در بین هر چند لایه، از لایهای فلزی استفاده میشود که با حک کردن الگوهای مشخص بر روی آنها به همان روشهای قبلی، لایههای سیمبندی بین المانها ساخته شوند. پردازندههای امروزی اینتل، مثلاً پردازنده پنتیوم چهار، از هفت لایه فلزی در ساختار خود بهره میگیرد. پردازنده AMD Athlon 64 از ۹ لایه فلزی استفاده میکند.
ساخت پیوند p-n:
برای ساختن پیوند p-n به یک بخش از یک تک بلور نیمه هادی نا خالصی نوع n و به بخش دیگر نا خالصی نوع pمی افزایند . پیوند ها بسته به چگونگی ایجاد ناحیه ی انتقال از pبه n دردرون تک بلور طبقه بندی می شوند . هنگامی که ناحیه انتقال بسیار باریک باشد , پیوند ناگهانی نامیده می شود . پیوند تدریجی پیوندی است که ناحیه انتقالش در محدوده ی وسیعتری “پخش ” شده باشد.
پیوند p-n ناگهانی به وسیله ی آلیاژ سازی و رشد رونشتی تشکیل می شوند . پیوند های تدریجی از طریق نفوذ گازی ناخالصیها یا کشت یونها ساخته می شوند.
رشد رونشستی :
رشد رونشستی یک لایه ی نیمه هادی روی یک پایه ی تک بلور نیمه هادی روشی برای تشکیل ناگهانی است . رشد رونشستی با گرم کردن پولک میزبان ؛ مثلأ سیلیسیم نوع n و عبور دادن جریان کنترل شده ی گازی حاوی تتراکلرید سیلیسیم ((sicl4و هیدروژن از روی سطح انجام می شود . در اثر فعل و انفعال گازها اتمهای سیلیسیم روی سطح پولک میزبان ته نشین می شود . چون معمولأ دما بالاتر از ۱۰۰۰درجه سانتی گراد است ؛ اتمهای ته نشین شده انرژی و قابلیت حرکت کافی دارند تا خود را به طور صحیح با شبکه ی بلور میزبان تطبیق دهند . این عمل سبب می شود که شبکه از روی سطح اصلی به طرف بالا امتداد یابد . سرعت نمونه ای رشد لایه ی رونشستی حدود یک میکرون در هر دقیقه است.
برای تشکیل لایه های نوع n یا p می توان در هنگام رشد رونشستی انتهای ناخالصی را به شکل ترکیب گازی به گاز حامل اضافه کرد . با رشد دادن یک لایه ی نوع pرونشستی (epi) بر روی یک پولک میزبان نوع nپک پیوند تقریبأ ناگهانی شکل می گیرد.البته ؛ ترتیبهای دیگر مثل رشد لایه ی نوع n به روش نشستی روی یک لایه ی نوع p نیز ممکن است.
فرایند رونشستی به طور وسیع در ساخت مدارهای مجتمع (IC)ها به کار می رود. دیود p-n تشکیل شده در فرایند رونشستی (epi)به طور معکوس با یاس می شود تا مدار را از پایه (پولک میزبان جدا سازد . اخیرأ از روش رونشستی در شکل دهی ساختارهای SOSمخفف Si-on_sapphire یا Si-on-spinel سیلیسیم)روی یاقوت سرخ یا یاقوت کبود ) است. یاقوتهای کبود , ترکیبات گوناگونی از اکسید منیزیم (Mgo)و اکسیدآلومینیم (Al203) هستند و ارتباط نزدیکی با یاقوت سرخ دارند . به طور خلاصه ناخالصی سیلیسیم به طریق رونشستی بر روی پایه های یاقوت سرخ یا کبود رشد داده می شود .انگیزه استفاده از پایه های یاقوت سرخ یا کبود , کیفیت عایق بودن این پایه ها در جدا سازی مدارها در طراحی IC های حاوی ادوات سریع ,به خصوص مدارهای مجتمع در مقیاس فشرده (LSI) است .
دیود زنر:
دیود های زنر یا شکست ، دیود های نیمه هادی با پیوند p-n هستند که در ناحیه بایاس معکوس کار کرده و دارای کاربردهای زیادی در الکترونیک ، مخصوصآ به عنوان ولتاژ مبنا و یا تثبیت کننده ی ولتاژ دارند.
هنگامیکه پتانسیل الکتریکی دو سر دیود را در جهت معکوس افزایش دهیم در ولتاژ خاصی پدیده شکست اتفاق می افتد، بد ین معنی که با افزایش بیشتر ولتاژ ، جریان بطور سریع و ناگهانی افزایش خواهد داشت. دیود های زنر یا شکست دیود هایی هستند که در این ناحیه یعنی ناحیه شکست کار میکنند و ظرفیت حرارتی آنها طوری است که قادر به تحمل محدود جریانمعینی در حالت شکست می باشند، برای توجیه فیزیکی پدیده شکست دو نوع مکانیسم وجود دارد.
مکانیسم اول در ولتاژهای کمتر از ۶ ولت برای دیودهایی که غلظت حامل ها در آن زیاد است اتفاق می افتد و به پدیده شکست زنر مشهور است. در این نوع دیود ها به علت زیاد بودن غلظت ناخالصی ها در دو قسمت p و n ، عرض منطقه ی بار فضای پیوند باریک بوده و در نتیجه با قرار دادن یک اختلاف پتانسیل v بر روی دیود (پتانسیل معکوس) ، میدان الکتریکی زیادی در منطقه ی پیوند ایجاد می شود.
با افزایش پتانسیل v به حدی می رسیمکه نیروی حاصل از میدان الکتریکی ، یکی از پیوند های کووالانسی را می شکند. با افزایش بیشتر پتانسیل دو سر دیود از انجایی که انرژی یا نیروهای پیوند کووالانسی باند ظرفیت در کریستال نیمه هادی تقریبأ مساوی صفر است ، پتانسیل تغییر چندانی نکرده ، بلکه تعداد بیشتری از پیوندهای ظرفیتی شکسته شده و جریان دیود افزایش می یابد.
آزمایش نشان میدهد که ضریب حرارتی ولتاژ شکست برای این نوع دیود منفی است ، یعنی با افزایش درجه حرارت ولتاژ شکست کاهش می یا بد. بنابر این دیود با ولتاژ کمتری به حالت شکست می رود (انرژی باند غدغن برای سیلیکن و ژرمانیم در درجه حرارت صفر مطلق بترتیب ۱٫۲۱ و۰٫۷۸۵ الکترون_ولت است، و در درجه حرارت ۳۰۰ درجه کلوین این انرژی برای سیلیکن ev 1.1و برای ژرمانیم ev0.72 خواهد بود). ثابت می شود که می دان الکتریکی لازم برای ایجاد پدیده زنر در حدود ۲*۱۰است.
این مقدار برای دیود هایی که در آنها غلظت حامل ها خیلی زیاد است در ولتاژهای کمتر از ۶ ولت ایجاد می شود . برای دیودهایی که دارای غلظت حاملهای کمتری هستند ولتاژ شکست زنر بالاتر بوده و پدیده ی دیگری بنام شکست بهمنی در آنها اتفاق می افتد (قبل از شکست زنر) که ذیلأ به بررسی آن می پردازیم.
مکانیسم دیگری که برای پدیده شکست ذکر می شود ، مکانیسم شکست بهمنی است. این مکانیسم در مورد دیودهایی که ولتاژ شکست آنها بیشتر از ۶ ولت است صادق می باشد . در این دیود ها به علت کم بودن غلظت ناخالصی ، عرض منطقه ی بار فضا زیاد بوده و میدان الکتریکی کافی برای شکستن پیوندهای کووالانسی بوجود نمی آید ، بلکه حاملهای اقلیتی که بواسطه انرژی حرارتی آزاد می شود ، در اثر میدان الکتریکی شتاب گرفته و انرژی جنبشی کافی بدست آورده و در بار فضا با یون های کریستال برخورد کرده و در نتیجه پیوندهای کووالانسی را می شکنند . با شکستن هر پیوند حاملهای ایجاد شده که خود باعث شکستن پیوند های بیشتر می شوند .
بدین ترتیب پیوندها بطور تصاعدی یا زنجیری و یا بصورت پدیده ی بهمنی شکسته می شوند و این باعث می شود که ولتاژ دو سر دیود تقریبأ ثابت مانده و جریان آن افزایش یافته و بواسطه ی مدار خارجی محدود می شود . چنین دیود هایی دارای ضریب درجه ی حرارتی مثبت هستند . زیرا با افزایش درجه ی حرارت اتمهای متشکله کریستال به ارتعاش در آورده ، در نتیجه احتمال برخورد حاملهای اقلیت با یونها ، بهنگام عبور از منطقه بار فضا زیادتر می گردد . به علت زیاد شدن برخوردها احتمال اینکه انرژی جنبشی حفره یا الکترون بین دو برخورد متوالی بمقدار لازم برای شکست پیوند برسد کمتر شده و در نتیجه ولتاژ شکست افزایش می یابد.




